sábado, 2 de marzo de 2013

Contenidos 2013


Estadística
  • Origen y evolución de la estadística
  • La estadística y sus alcances
  • Organización y tratamiento de la información.
  • El método estadístico. Registro y presentación de las observaciones
  • Poblaciones o universos. Características. Concepto
  • Muestra: concepto. Teoría de muestras
  • Variables. Atributo
  • Tipos de variables: continuas, discontinuas, temporales.
  • Tabla o distribución de frecuencias. Diagramas
  • Histogramas. Polígono de frecuencias. Ojiva
  • Medidas de posición: media aritmética, mediana y modo
  • Medidas de dispersión o de variabilidad
  • Técnicas de producción: cálculo y uso del coeficiente de variación
  • Distribuciones bidimensionales
  • Un acercamiento a la probabilidad y la estadística
  • Probabilidad, definición. Experimentos aleatorios. Espacio muestral.

Física
  • Las mediciones en Física
  • Fuerza y Presión
  • Medición de fuerzas
  • Magnitudes vectoriales y escalares
  • Peso específico
  • Densidad
  • Presión. Unidades
  • Hidrostática
  • Principio de Pascal. Aplicaciones. Prensa hidráulica. Elevadores
  • Principio de Arquímedes

Intercambio de energía térmica
  • Calor y Temperatura.
  • Interpretación microscópica de la Temperatura.
  • Intercambio de calor por conducción, variables involucradas.
  • Noción de calor específico.
  • Conservación y degradación de la energía.
  • Centrales energéticas.

Intercambio de energía por radiación
  • Emisión, absorción y reflexión de radiación.
  • Espectro electromagnético.
  • La energía del Sol y su influencia sobre la Tierra.
  • El efecto Invernadero.
  • La radiación solar: usos y aplicaciones.

Química

La estructura del átomo
  • Partículas subatómicas: electrones, protones y neutrones.
  • Niveles de energía electrónicos.
  • Distribución de electrones por nivel.
  • Tabla periódica.
  • Estructura del núcleo.
  • Número atómico y número de masa.
  • Isótopos.

Uniones químicas
  • Unión iónica y unión covalente.
  • Electronegatividad.
  • Diagramas o estructuras de Lewis.
  • Fórmulas de sustancias binarias de compuestos sencillos.

Las reacciones nucleares
  • Reacciones de fisión y fusión

viernes, 2 de noviembre de 2012

Intercambio de energía por radiación


¿Que es la radiación?

El fenómeno de la radiación consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacío o de un medio material. La radiación electromagnética es independiente de la materia para su propagación, sin embargo, la velocidad, intensidad y dirección de su flujo de energía se ven influidos por la presencia de materia.
La radiación propagada en forma de ondas electromagnéticas (rayos UV, rayos gamma, rayos X, etc.) se llama radiación electromagnética, mientras que la radiación corpuscular es la radiación transmitida en forma de partículas subatómicas (partículas α, neutrones, etc.) que se mueven a gran velocidad en un medio o el vacío, con apreciable transporte de energía.
Si la radiación transporta energía suficiente como para provocar ionización en el medio que atraviesa, se dice que es una radiación ionizante. En caso contrario se habla de radiación no ionizante. El carácter ionizante o no ionizante de la radiación es independiente de su naturaleza corpuscular u ondulatoria.
Son radiaciones ionizantes los rayos X, rayos γ, partículas α y parte del espectro de la radiación UV entre otros. Por otro lado, radiaciones como los rayos UV y las ondas de radio, TV o de telefonía móvil, son algunos ejemplos de radiaciones no ionizantes.

Radiación no ionizante

Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material. Se pueden clasificar en dos grandes grupos: 
  •         Los campos electromagnéticos
  •         Las radiaciones ópticas

Dentro de los campos electromagnéticos se pueden distinguir aquellos generados por las líneas de corriente eléctrica o por campos eléctricos estáticos. Otros ejemplos son las ondas de radiofrecuencia, utilizadas por las emisoras de radio, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones.
Entre las radiaciones ópticas se pueden mencionar los rayos láser y la radiación solar como ser los rayos infrarrojos, la luz visible y la radiación ultravioleta. Estas radiaciones pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano.

Rayos infrarrojos

La radiación infrarroja, o radiación IR es un tipo de radiación electromagnética y térmica, de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Consecuentemente, tiene menor frecuencia que la luz visible y mayor que las microondas. Su rango de longitudes de onda va desde unos 0,7 hasta los 1000 micrómetros. La radiación infrarroja es emitida por cualquier cuerpo cuya temperatura sea mayor que 0 Kelvin, es decir, −273,15 grados Celsius (cero absoluto).
Los infrarrojos son clasificados, de acuerdo a su longitud de onda, de este modo:
  • infrarrojo cercano (de 800 nm a 2500 nm)
  • infrarrojo medio (de 2.5 µm a 50 µm)
  • infrarrojo lejano (de 50 µm a 1000 µm)
La materia, por su caracterización energética emite radiación. En general, la longitud de onda donde un cuerpo emite el máximo de radiación es inversamente proporcional a la temperatura de éste (Ley de Wien). De esta forma la mayoría de los objetos a temperaturas cotidianas tienen su máximo de emisión en el infrarrojo. Los seres vivos, en especial los mamíferos, emiten una gran proporción de radiación en la parte del espectro infrarrojo, debido a su calor corporal. 
La potencia emitida en forma de calor por un cuerpo humano, por ejemplo, se puede obtener a partir de la superficie de su piel (unos 2 metros cuadrados) y su temperatura corporal (unos 37 °C, es decir 310 K), por medio de la Ley de Stefan-Boltzmann, y resulta ser de alrededor de 1000 vatios.
Esto está íntimamente relacionado con la llamada "sensación térmica", según la cual podemos sentir frío o calor independientemente de la temperatura ambiental, en función de la radiación que recibimos (por ejemplo del Sol u otros cuerpos calientes más cercanos): Si recibimos más de los 1000 vatios que emitimos, tendremos calor, y si recibimos menos, tendremos frío. En ambos casos la temperatura de nuestro cuerpo es constante (37 °C) y la del aire que nos rodea también. Por lo tanto, la sensación térmica en aire quieto, sólo tiene que ver con la cantidad de radiación (por lo general infrarroja) que recibimos y su balance con la que emitimos constantemente como cuerpos calientes que somos. Si en cambio hay viento, la capa de aire en contacto con nuestra piel puede ser reemplazada por aire a otra temperatura, lo que también altera el equilibrio térmico y modifica la sensación térmica.

Radiación visible o luz

Lo que llamamos luz, en realidad es una mínima parte del espectro de radiación electromagnética. Esta porción corresponde a longitudes de onda comprendidas entre 0,4 y 0,8 μ (< 780 nm) e impresionan la retina humana. Este es el rango en el que el sol y las estrellas similares a las que emiten la mayor parte de su radiación. Probablemente, no es una coincidencia que el ojo humano sea sensible a las longitudes de onda que emite el sol con más fuerza. La luz visible (y la luz del infrarrojo cercano) es normalmente absorbida y emitida por los electrones en las moléculas y los átomos que se mueven de un nivel de energía a otro. La unidad usual para expresar las longitudes de onda es el Angstrom. La luz que vemos con nuestros ojos es realmente una parte muy pequeña del espectro electromagnético, la radiación electromagnética con una longitud de onda entre 380 nm y 760 nm (790-400 terahercios) es detectada por el ojo humano y se percibe como luz visible. Otras longitudes de onda, especialmente en el infrarrojo cercano (más de 760 nm) y ultravioleta (menor de 380 nm) también se refiere a veces como la luz, especialmente cuando la visibilidad a los seres humanos no es relevante. Si la radiación tiene una frecuencia en la región visible del espectro electromagnético se refleja en un objeto, por ejemplo, un tazón de fruta, y luego golpea los ojos, esto da lugar a la percepción visual de la escena. Nuestro sistema visual del cerebro procesa la multitud de frecuencias se refleja en diferentes tonos y matices, y a través de este, no del todo entendido fenómeno psico-físico, la mayoría de la gente percibe un tazón de fruta; Un arco iris muestra la óptica (visible) la parte del espectro electromagnético.
La luz puede usarse para diferentes tipos de comunicaciones. Las ondas de luz pueden modularse y transmitirse a través de fibras ópticas, lo cual representa una ventaja pues con su alta frecuencia es capaz de llevar más información.
Por otro lado, las ondas de luz pueden transmitirse en el espacio libre, usando un haz visible de láser.
En la mayoría de las longitudes de onda, sin embargo, la información transportada por la radiación electromagnética no es detectada directamente por los sentidos humanos. Las fuentes naturales producen radiación electromagnética en el espectro, y nuestra tecnología también se puede manipular una amplia gama de longitudes de onda. La fibra óptica transmite luz que, aunque no es adecuado para la visión directa, puede llevar los datos que se puede traducir en sonido o una imagen. La codificación utilizada en estos datos es similar a la utilizada con las ondas de radio.

Radiación Ultravioleta

La radiación solar posee una gran influencia en el medio ambiente debido a que es un factor que determina el clima terrestre. En particular la radiación ultravioleta es protagonista de muchos de los procesos de la biosfera. La radiación ultravioleta es una radiación electromagnética cuyas longitudes de onda van aproximadamente desde los 400 nm, el límite de la luz violeta, hasta los 15 nm, donde empiezan los rayos X. (Un nanómetro, o nm, es una millonésima de milímetro). Este tipo de radiación aunque en cierta forma es beneficiosa, si se excede los limites admisibles por la vida terrestre puede causar efectos nocivos en plantas y animales e incluido el hombre en lo que respecta a la piel y los ojos.
Hay una serie de factores que afectan de manera directa la radiación ultravioleta que llega a la superficie terrestre, estos son:

·         Ozono atmosférico
·         Elevación solar
·         Altitud
·         Reflexión
·         Nubes y polvo
·         Dispersión atmosférica

El Índice UV es un parámetro UV para la población. Se trata de una unidad de medida de los niveles de radiación UV relativos a sus efectos sobre la piel humana (UV que induce eritema). Este índice puede variar entre 0 y 16 y tiene cinco rangos:
UVI
1
2
3
4
5
6
7
8
9
10
11 ó mayor

Bajo
Moderado
Alto
Muy alto
Extremado
Cuanto menor es la longitud de onda de la luz ultravioleta, más daño puede causar a la vida, pero también es más fácilmente absorbida por la capa de ozono. De acuerdo a los efectos que la radiación ultravioleta produce sobre los seres vivos se pueden diferenciar tres zonas en el espectro de la misma en base a su longitud de onda:

      - Ultravioleta C (UVC)
Este tipo de radiación ultravioleta es la de menor longitud de onda, cubre toda la parte ultravioleta menor de 290 nm, es letal para todas las formas de vida de nuestro planeta y en presencia de la cual no sería posible la vida en la Tierra tal y como la conocemos actualmente, es totalmente absorbida por el ozono, de modo que en ningún caso alcanza la superficie terrestre.

      - Ultravioleta B (UVB)
Entre las radiaciones UVA y UVC está la radiación UVB con una longitud de onda entre 280 y 320 nm, menos letal que la segunda, pero Peligrosa. Gran parte de esta radiación es absorbida por el ozono, pero una porción considerable alcanza la tierra en su superficie afectando a los seres vivos produciendo además del bronceado, quemaduras, envejecimiento de piel, conjuntivitis, etc. Cualquier daño a la capa de ozono aumentará la radiación UVB. Sin embargo, esta radiación está también limitada por el ozono troposférico, los aerosoles y las Nubes.

      - Ultravioleta A (UVA)
La radiación UVA, con mayor longitud de onda que las anteriores entre 400 y 320 nm, es relativamente inofensiva y pasa casi en su totalidad a través de la capa de ozono. Este tipo de radiación alcanza los efectos de la radiación ultravioleta B pero mediante dosis unas 1000 veces superiores, característica que la convierte en la menos perjudicial. Hay que realizar la aclaración de que la radiación Ultravioleta A alcanza la tierra con una intensidad muy superior a la UVB por lo tanto es recomendable Protegerse.

Radiación ionizante

Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo). Entonces son radiaciones ionizantes los rayos X, las radiaciones alfa, beta y gamma. Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras.

1)      Radiación alfa

Las partículas alfa son conjuntos de dos protones y dos neutrones, es decir, el núcleo de un átomo de helio, eyectadas del núcleo de un átomo radiactivo. La emisión de este tipo de radiación ocurre en general en átomos de elementos muy pesados, como el uranio, el torio o el radio. El núcleo de estos átomos tiene bastantes más neutrones que protones y eso los hace inestables. Al emitir una partícula alfa, el átomo cambia la composición de su núcleo, y queda transformado en otro con dos protones y dos neutrones menos. Esto se conoce como transmutación de los elementos. Así por ejemplo, cuando el uranio 238 cuyo número atómico (Z = número de protones en el núcleo) es de 92, emite una partícula alfa, queda transmutado en un átomo de torio 234, cuyo número atómico es de 90

La característica de estas partículas a ser muy pesadas y tiene doble carga positiva les hace interactuar con casi cualquier otra partícula con que se encuentre incluyendo los átomos que constituyen el aire (cuando penetra en un centímetro de aire puede producir hasta 30.000 pares de iones), causando numerosas ionizaciones en una distancia corta.
Esta rapidez para repartir energía la convierte en una radiación poco penetrante que puede ser detenida por una simple hoja de papel sin embargo no son inofensivas ya que pueden actuar en los lugares en que se depositan ya sea por sedimentación o por inhalación.

2)     Radiación beta

Las partículas beta tienen una carga negativa y una masa muy pequeña, por ello reaccionan menos frecuentemente con la materia que las alfa pero su poder de penetración es mayor que en estas (casi 100 veces más penetrantes). Son frenadas por metros de aire, una lámina de aluminio o unos cm. de agua.
Este tipo de radiación se origina en un proceso de reorganización nuclear en que el núcleo emite un electrón, junto con una partícula no usual, casi sin masa, denominada antineutrino que se lleva algo de la energía perdida por el núcleo. Como la radiactividad alfa, la beta tiene lugar en átomos ricos en neutrones, y suelen ser elementos producidos en reacciones nucleares naturales, y más a menudo, en las plantas de energía nuclear. Cuando un núcleo expulsa una partícula beta, un neutrón es transformado en un protón. El núcleo aumenta así en una unidad su número atómico, Z, y por tanto, se transmuta en el elemento siguiente de la Tabla Periódica de los Elementos.

Si una partícula beta se acerca a un núcleo atómico, desvía su trayectoria y pierde parte de su energía (se "frena"). La energía que ha perdido se transforma en rayos X. Este proceso recibe el nombre de "Radiación de Frenado".Otra interesante reacción ocurre cuando una partícula beta colisiona con un electrón positivo. En este proceso, ambas partículas se aniquilan y desaparecen, liberando energía en forma de rayos gamma.
 3)     Radiación gamma

Las emisiones alfa y beta suelen ir asociadas con la emisión gamma. Es decir las radiaciones gamma suelen tener su origen en el núcleo excitado generalmente, tras emitir una partícula alfa o beta, el núcleo tiene todavía un exceso de energía, que es eliminado como ondas electromagnéticas de elevada frecuencia. Los rayos gamma no poseen carga ni masa; por tanto, la emisión de rayos gamma por parte de un núcleo no conlleva cambios en su estructura, interaccionan con la materia colisionando con las capas electrónicas de los átomos con los que se cruzan provocando la pérdida de una determinada cantidad de energía radiante con lo cual pueden atravesar grandes distancias, Su energía es variable, pero en general pueden atravesar cientos de metros en el aire, y son detenidas solamente por capas grandes de hormigón, plomo o agua.

Con la emisión de estos rayos, el núcleo compensa el estado inestable que sigue a los procesos alfa y beta. La partícula alfa o beta primaria y su rayo gamma asociado se emiten casi simultáneamente. Sin embargo, se conocen algunos casos de emisión alfa o beta pura, es decir, procesos alfa o beta no acompañados de rayos gamma; también se conocen algunos isótopos que emiten rayos gamma de forma pura. Esta emisión gamma pura tiene lugar cuando un isótopo existe en dos formas diferentes, los llamados isómeros nucleares, con el mismo número atómico y número másico pero distintas energías. La emisión de rayos gamma acompaña a la transición del isómero de mayor energía a la forma de menor energía.
Aunque no hay átomos radiactivos que sean emisores gamma puros, algunos son emisores muy importantes, como el Tecnecio 99, utilizado en Medicina Nuclear, y el Cesio 137, que se usa sobre todo para la calibración de los instrumentos de medición de radiactividad.
Rayos X

Los rayos X son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la desexcitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isótopos radiactivos, mientras que los rayos X surgen de fenómenos extranucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).

Radiación electromagnética

La radiación electromagnética es una combinación de campos eléctricos y magnéticos oscilantes, que se propagan a través del espacio transportando energía de un lugar a otro.
La radiación electromagnética puede manifestarse de diversas maneras como calor radiado, luz visible, rayos X o rayos gamma. A diferencia de otros tipos de onda, como el sonido, que necesitan un medio material para propagarse, la radiación electromagnética se puede propagar en el vacío. En el siglo XIX se pensaba que existía una sustancia indetectable, llamada éter, que ocupaba el vacío y servía de medio de propagación de las ondas electromagnéticas. El estudio teórico de la radiación electromagnética se denomina electrodinámica y es un subcampo del electromagnetismo.

Fenómenos asociados a la radiación electromagnética

Existen multitud de fenómenos físicos asociados con la radiación electromagnética que pueden ser estudiados de manera unificada, como la interacción de ondas electromagnéticas y partículas cargadas presentes en la materia. Entre estos fenómenos están por ejemplo la luz visible, el calor radiado, las ondas de radio y televisión o ciertos tipos de radioactividad por citar algunos de los fenómenos más destacados. Todos estos fenómenos consisten en la emisión de radiación electromagnética en diferentes rangos de frecuencias (o equivalentemente diferentes longitudes de onda), siendo el rango de frecuencia o longitud de onda el más usado para clasificar los diferentes tipos de radiación electromagnética. La ordenación de los diversos tipos de radiación electromagnética por frecuencia recibe el nombre de espectro electromagnético.

Luz visible:
La luz visible está formada por radiación electromagnética cuyas longitudes de onda están comprendidas entre 400 y 700 nm. La luz es producida en la corteza atómica de los átomos, cuando un átomo por diversos motivos recibe energía puede que algunos de sus electrones pasen a capas electrónicas de mayor energía. Los electrones son inestables en capas altas de mayor energía si existen niveles energéticos inferiores desocupados, por lo que tienden a caer hacia estos, pero al decaer hacia niveles inferiores la conservación de la energía requiere la emisión de fotones, cuyas frecuencias frecuentemente caen en el rango de frecuencias asociados a la luz visible. Eso es precisamente lo que sucede en fenómenos de emisión primaria tan diversos como la llama del fuego, un filamento incandescente de una lámpara o la luz procedente del sol. Secundariamente la luz procedente de emisión primaria puede ser reflejada, refractada, absorbida parcialmente y esa es la razón por la cual objetos que no son fuentes de emisión primaria son visibles.

Calor radiado:
Cuando se somete a algún metal y otras substancias a fuentes de temperatura estas se calientan y llegan a emitir luz visible. Para un metal este fenómeno se denomina calentar "al rojo vivo", ya que la luz emitida inicialmente es rojiza-anaranjada, si la temperatura se eleva más blanca-amarillenta. Conviene señalar que antes que la luz emitida por metales y otras substancias sobrecalentadas sea visible estos mismos cuerpos radian calor en forma de radiación infrarroja que es un tipo de radiación electromagnética no visible directamente por el ojo humano.

Interacción entre radiación electromagnética y conductores:
Cuando un alambre o cualquier objeto conductor, tal como una antena, conduce corriente alterna, la radiación electromagnética se propaga en la misma frecuencia que la corriente.
De forma similar, cuando una radiación electromagnética incide en un conductor eléctrico, hace que los electrones de su superficie oscilen, generándose de esta forma una corriente alterna cuya frecuencia es la misma que la de la radiación incidente. Este efecto se usa en las antenas, que pueden actuar como emisores o receptores de radiación electromagnética.

Estudios mediante análisis del espectro electromagnético:
Se puede obtener mucha información acerca de las propiedades físicas de un objeto a través del estudio de su espectro electromagnético, ya sea por la luz emitida (radiación de cuerpo negro) o absorbida por él. Esto es la espectroscopia y se usa ampliamente en astrofísica y química. Por ejemplo, los átomos de hidrógeno tienen una frecuencia natural de oscilación, por lo que emiten ondas de radio, las cuales tiene una longitud de onda de 21,12 cm.

Penetración de la radiación electromagnética:
En función de la frecuencia, las ondas electromagnéticas pueden no atravesar medios conductores. Esta es la razón por la cual las transmisiones de radio no funcionan bajo el mar y los teléfonos móviles se queden sin cobertura dentro de una caja de metal. Sin embargo, como la energía no se crea ni se destruye, cuando una onda electromagnética choca con un conductor pueden suceder dos cosas. La primera es que se transformen en calor: este efecto tiene aplicación en los hornos de microondas. La segunda es que se reflejen en la superficie del conductor (como en un espejo).

Espectro electromagnético

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir observar el espectro, permiten realizar medidas sobre el mismo, como son la longitud de onda, la frecuencia y la intensidad de la radiación.
El espectro electromagnético se extiende desde la radiación de menor longitud de onda, como los rayos gamma y los rayos X, pasando por la luz ultravioleta, la luz visible y los rayos infrarrojos, hasta las ondas electromagnéticas de mayor longitud de onda, como son las ondas de radio. Se cree que el límite para la longitud de onda más pequeña posible es la longitud de Planck mientras que el límite máximo sería el tamaño del Universo, aunque formalmente el espectro electromagnético es infinito y continuo.
Todas las ondas electromagnéticas viajan en el vacío a unos 300.000 km/s. El conjunto de ondas electromagnéticas se llama espectro electromagnético. El espectro electromagnético se divide en regiones, de acuerdo con los valores de frecuencia o longitud de onda en el vacío. Estas regiones no tienen límites definidos sino arbitrarios que se usan como referencia.
Cuanto mayor es la frecuencia y menor la longitud de onda, más concentrada está la energía que transporta una onda electromagnética. Las ondas de radio tienen baja frecuencia y son las más largas, y los rayos gamma de alta frecuencia tienen la longitud de onda más corta. Por esto, las ondas de radio no afectan los átomos de nuestro cuerpo, pero los rayos gamma sí lo hacen.

Radiación térmica

El planeta recibe energía del sol en forma de luz y calor. Una parte es transformada por las plantas durante el proceso de fotosíntesis. La otra evapora el agua de los ríos y los mares, y permite su circulación en todo el planeta. También calienta la superficie y causa el movimiento del aire que provoca los vientos.
¿Cómo llega la energía del sol a la Tierra?
La energía solar atraviesa el espacio y la atmósfera. No llega a la superficie de la Tierra por conducción, porque el aire es mal conductor del calor. Tampoco llega por convección, porque las corrientes de convección se originan después del calentamiento de la Tierra. Por lo tanto la energía del sol llega a nuestro planeta por un mecanismo de transmisión de calor diferente, denominado radiación, que consiste en ondas emitidas por el sol. Durante el día, la radiación solar calienta el suelo, el agua de los ríos y los mares, las plantas, las paredes y techos de las casas y todo lo que se encuentra en la superficie terrestre. También participa en procesos biológicos como la fotosíntesis, temperatura de animales poiquilotermos (animales con temperatura corporal variable) y otros

Factores que influyen en la radiación UV en la superficie
Los niveles de radiación UV que alcanzan la superficie terrestre viene condicionado básicamente por el ángulo cenital solar (a su vez condicionado por la hora del día, posición geográfica y época del año), el contenido total de ozono, la nubosidad, la altitud sobre el nivel del mar, los aerosoles, el albedo o reflectividad del suelo, el ozono troposférico y otros contaminantes gaseosos.
Efecto con la latitud
La cantidad de radiación solar que llega a la superficie es muy dependiente de la elevación del sol. En las regiones tropicales en que el sol se encuentra cerca de la vertical en los meses de verano los niveles de radiación UV son muy altos. Por el contrario, en las regiones polares la elevación del sol incluso en verano es poca y los niveles de radiación debidos a este efecto son bajos o moderados.
Nubosidad
La importancia de la nubosidad sobre la radiación UV en superficie está bien establecida. La nubosidad tiene un efecto plano sobre la radiación UV, de modo que atenúa el espectro en la misma medida para todo el rango sin modificar ostensiblemente la estructura espectral. La cantidad de radiación UV atenuada por la nube será función del tipo de nube y de su desarrollo. Así pues, y como norma general, las nubes mas densas y oscuras bloquearán mas eficientemente la radiación UV, mientras que las nubes blancas y con menor desarrollo junto con las nieblas y calimas atenúan en mucha menor medida la radiación UV. El hecho de que sintamos menos calor en presencia de estas nubes puede resultar engañoso, ya que nos podemos quemar debido a la escasa atenuación de estas nubes en la región ultravioleta. La presencia de nubes y el contenido de humedad de la atmósfera hacen que la radiación solar disminuya, con respecto a otra que no tenga nubes y la húmeda atmosférica sea baja. La fracción del cielo cubierto y el tipo de nubes afectan la intensidad y composición espectral de la radiación ultravioleta que llega a la superficie terrestre. Este efecto es debido principalmente a la reflexión de la radiación ultravioleta por las gotas de agua o cristales de hielo que forman la nube. No siempre el efecto neto es una disminución de la irradiancia; en ocasiones, las nubes cubren gran parte del cielo, pero no ocultan el disco solar. En estas circunstancias, la radiación solar reflejada por la superficie terrestre hacia arriba, es reflejada a su vez por las nubes nuevamente hacia la Tierra, por lo que así aumenta el nivel de irradiancia en la superficie.
Aerosoles
El aerosol atmosférico está constituido por el conjunto de partículas en suspensión en la atmósfera; el aerosol troposférico reduce los niveles de UV significativamente en regiones contaminadas. El efecto del aerosol estratosférico ha incrementado su interés en la comunidad científica desde la erupción del Monte Pinatubo en Junio de 1991. El scattering de la radiación por el aerosol puede reducir la irradiancia en superficie para longitudes de onda largas, pero puede cambiar también el camino óptico de los fotones a través del ozono estratosférico resultando un incremento de la irradiancia en superficie, especialmente para longitudes de onda corta y ángulos cenital solar grandes. El análisis de las medidas espectrales muestran una marcado incremento de la razón Difusa/Directa, pero no se encuentran variaciones significativas en el efecto sobre la irradiancia global. El aerosol estratosférico también influye en los niveles de radiación UV que alcanzan la superficie indirectamente, a través de su efecto en la química del ozono estratosférico.
Albedo (o reflectividad del suelo) y altitud
La reflectividad del suelo afecta a la radiación UV tanto en la radiación difusa como en la directamente reflejada por la superficie. Los valores de albedo suelen estar por debajo de 10% para la vegetación pero la variabilidad en caso de hielo puede alcanzar del 7 al 75% y para la nieve del 20 al 100%. La alta reflectividad puede ser de gran importancia en la distribución geográfica y estacional de la radiación UV, especialmente en climas fríos.
Los niveles de radiación UV están muy influenciados por la altura sobre el nivel del mar debido a la disminución de la capa de aire que queda por encima. Así, La radiación ultravioleta aumenta con la altitud del lugar aproximadamente un 10% por kilómetro de elevación. A igualdad de condiciones meteorológicas, los lugares elevados reciben mucha mas radiación que a nivel del mar.
Efecto de la altitud
Mientras mayor sea la altitud del lugar, menor es la atenuación de los rayos del sol por la atmósfera, por lo que la radiación UV será mayor que a nivel del mar.
Efecto de la oblicuidad o masa de aire atmosférica
Se denomina ángulo cenital al ángulo que forma la dirección aparente del sol con la vertical local. Este ángulo depende a su vez de la hora del día, la estación, y la latitud del sitio. La influencia de este factor tiene dos aspectos, uno de ellos puramente geométrico, ya que el flujo de radiación que atraviesa una superficie cualquiera varía con la orientación de la superficie. Si esta es paralela a la dirección de incidencia, el flujo de radiación es cero, mientras que si es perpendicular, resulta máximo. Además de este efecto, el aumento del ángulo cenital implica que la radiación tiene que atravesar una capa atmosférica más gruesa, y por consiguiente su atenuación será mayor. La oblicuidad de los rayos del sol y el horizonte, depende de la latitud, y del día del año. La cantidad de radiación UV de todas los tipos, que nos llega a la tierra dependen de la hora y del ángulo que los rayos del sol forman con la superficie receptora. Cuando el sol esta cerca del horizonte, su radiación viaja un largo camino a través de la atmósfera, por lo que menos rayos UV llegan a la superficie de la tierra y cuando el sol está en la parte más alta, sus rayos tienen menos camino que atravesar y caen con mayor intensidad en la superficie de la tierra.
En latitudes medias y altas, es de mayor consideración.
Tipo de superficie reflejante (albedo)
La reflexión de los rayos solares, varía según el tipo de superficie. Es por ello que se debe evitar salir a tomar sol en la presencia de nieve, ya que esta refleja el 85 % de la radiación, y aunque te pongas un sombrero y uses gafas, la radiación reflejada te puede afectar. En el caso de los trópicos, la reflexión de la arena (17%), aunque es considerablemente menor que la de la nieve, tiene que ser tomado en cuenta, especialmente en los alrededores del medio día, con cielo despejado.
Otros factores que afectan la intensidad de la radiación UV
La intensidad de radiación ultravioleta producida por el sol tiene leves variaciones, asociadas a su período de rotación aparente -27 días-, al ciclo de manchas solares -11 años-, y a la aparición de protuberancias y explosiones en la fotosfera. Estas fluctuaciones afectan sobre todo las componentes más energéticas del espectro, que no llegan a la superficie terrestre. Sin embargo, pueden afectar al ciclo de producción y destrucción de ozono en la alta atmósfera, y en consecuencia, la transmisión atmosférica de otras porciones del espectro ultravioleta.
Otro factor que determina la cantidad de esta radiación que llega a nuestro planeta es la distancia entre la Tierra y el Sol, la cual, debido a la forma elíptica de la órbita terrestre, oscila un 3,4% a lo largo del año. Como la atenuación de la radiación es cuadrática con esta distancia, el resultado es una variación de alrededor del 7% en la intensidad de radiación ultravioleta extraterrestre, y es máxima en diciembre, al comienzo del verano austral.
Dentro de los factores atmosféricos, el más conocido es la atenuación que produce la capa de ozono. Podemos dividir este fenómeno en dos fases; en la primera, una molécula de oxígeno absorbe radiación -hv representa un fotón- de longitud de onda (λ) menor de 240nm y se disocia. Este oxígeno atómico, con ayuda de alguna otra molécula, forma ozono (O3):
02 + hv ( l < 240nm) -> 20
30 + X -> 03 + X
La segunda parte consiste en la disociación del ozono mediante la absorción de más radiación ultravioleta, pero esta vez de longitud de onda más larga:

03+ hv (l <= 320nm) -> O+O2
La porción del espectro que comprende longitudes de onda entre 240 y 320nm no se absorbe uniformemente, por lo que algo de radiación ultravioleta de λ >290nm llega a la superficie terrestre. Esta banda es justamente la más seriamente afectada por la disminución de las concentraciones de ozono estratosférico.
La atenuación de la radiación solar no sólo se produce por absorción sino también por la denominada dispersión de Rayleigh. En el fenómeno de dispersión, el fotón involucrado no desaparece sino que es desviado en su dirección de propagación. La distribución angular de la radiación dispersada es simétrica, lo que implica que la probabilidad de que la luz sea dispersada en alguna dirección "hacia arriba" es equivalente a la de ser dispersada en alguna dirección "hacia abajo". Para la porción ultravioleta del espectro, la dispersión de Rayleigh resulta importante hasta el punto de que más del 40% de la irradiancia de 300nm que llega a la superficie terrestre no proviene directamente del disco solar -radiación directa- sino del resto del cielo -radiación difusa-.
En áreas urbanas se producen concentraciones importantes de gases contaminantes a nivel de la atmósfera baja, entre ellos: ozono troposférico, dióxido de azufre y dióxido de nitrógeno, que absorben radiación ultravioleta. El aumento de concentración de estos gases lleva a una disminución de la intensidad de radiación ultravioleta en las áreas urbanas, a pesar del debilitamiento de la capa de ozono estratosférico.

Emisión de radiación

Todos los cuerpos, a cualquier temperatura, irradian energía. Esto significa que además del sol, las brasas o el horno encendido, también lo hacen el suelo, las personas, los animales y cualquier objeto del universo. Es por esto que existe un continuo intercambio de radiación entre un elemento y su entorno. Por ejemplo: si una persona está de pie en una habitación, recibe radiación de las paredes, el piso, los muebles o del sol que entra por la ventana. A su vez, la persona también la emite.
La radiación que llega a un cuerpo puede ser absorbida, reflejada o transmitida.
En la mayoría de los casos, los objetos que absorben más radiación de la que emiten aumentan su temperatura y los que emiten más de la que absorben, la disminuyen.
Este proceso tiene lugar hasta que en los cuerpos no se producen más variaciones de temperatura: continúan con el proceso de emisión y absorción, pero se encuentran en equilibrio térmico. Esto se explica, considerando que se llega a un equilibrio entre la radiación emitida y la absorbida, y en estas condiciones, la temperatura del cuerpo se mantiene constante.

Emisión de radiación y temperatura

Un panel cerámico que se utiliza para calefaccionar irradia más energía por unidad de tiempo cuanto más caliente se encuentre. Algo similar ocurre con una plancha. Al acercar la mano a la superficie que apoya al planchar, se siente la energía que genera. Si, mediante la llave selectora, se aumenta la temperatura de la plancha se sentirá más calor. Los ejemplos permiten inferir que la energía por unidad de tiempo que emite un cuerpo depende de la temperatura a la que se encuentre.
Este descubrimiento fue realizado empíricamente por el físico esloveno Josef Stefan (1835-1893); a fines del siglo XIX y deducido teóricamente por el austríaco Ludwin Bolztmann (1844-1906), pocos años más tarde. Los resultados encontrados experimentalmente permiten determinar que todos los cuerpos irradian energía de acuerdo con su temperatura. Es decir, los cuerpos no solo emiten radiación al interactuar con otros de menor temperatura, sino que todos, constantemente, irradian energía.